

Méthodes pénalisées pour l'apprentissage supervisé en grande dimension ; applications en cancérologie et en traumatologie

Vivian Viallon, Centre International de Recherche sur le Cancer Séminaires "Grosses données"

1

Contents

Supervised Learning and overfitting

Supervised learning

Overfitting

Penalized approaches for high-dimensional linear regression models

High-dimensional linear regression models

Penalized methods

Multi-task learning and subgroup analysis

Discussion

Supervised Learning and overfitting

Overview

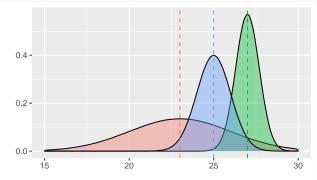
- y: outcome of interest
 - continuous: biomarker level, survival time, consumption of electricity, traffic, etc.
 - categorical/binary: diseased/"healthy", "qualifiers" of an image, spam/regular email, etc.

Overview

- *y*: outcome of interest
- What is the best prediction we can make for a new individual/observation?

Overview

- *y*: outcome of interest
- What is the best prediction we can make for a new individual/observation?
 - Intuition with a continuous y; example: biomarker level



International Agency for Research on Cancer

Whole population High-caloric diet High-caloric diet + low physical activity + "bad" genes + ...

Formalism

• Data

- *y*: **continuous** outcome (~ **label**)
- $\mathbf{x} = (x_1, \dots, x_p)$: *p* features (predictors)

- **Objective: to find** the function f such that
 - for "most" (\mathbf{x}, y) , $f(\mathbf{x})$ best predicts y

Formalism

• Data

- *y*: **continuous** outcome (~ **label**)
- $\mathbf{x} = (x_1, \dots, x_p)$: *p* features (predictors)

- **Objective: to find** the function *f* such that
 - for "most" (x, y), f(x) best predicts y
 - $\mathbb{E}_{(\mathbf{x},y)}\{[y f(\mathbf{x})]^2\}$ is minimized.

Formalism

• Data

- *y*: **continuous** outcome (~ **label**)
- $\mathbf{x} = (x_1, \dots, x_p)$: *p* features (predictors)

- **Objective: to find** the function f such that
 - for "most" (\mathbf{x}, y) , $f(\mathbf{x})$ best predicts y
 - $\mathbb{E}_{(\mathbf{x},y)}\{[y f(\mathbf{x})]^2\}$ is minimized.
 - Solution: $f(\mathbf{x}) = f^*(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$: the regression function

Towards supervised learning

• But *f*^{*} unknown

Towards supervised learning

- But f^{*} unknown
- Solution:
 - Use a training sample $\mathcal{T}(n) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\},\$
 - and the approx. $\frac{1}{n}\sum_i \{y_i f(\mathbf{x}_i)\}^2 \approx \mathbb{E}_{(\mathbf{x},y)}\{[y f(\mathbf{x})]^2\}$

Towards supervised learning

- But f^{*} unknown
- Solution:
 - Use a training sample $\mathcal{T}(n) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\},\$
 - and the approx. $\frac{1}{n}\sum_i \{y_i f(\mathbf{x}_i)\}^2 \approx \mathbb{E}_{(\mathbf{x},y)}\{[y f(\mathbf{x})]^2\}$

Supervised Learning

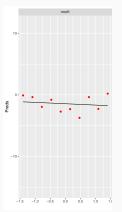
$$\hat{f} = \underset{f \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{n} \{y_i - f(\mathbf{x}_i)\}^2$$

where $\ensuremath{\mathcal{C}}$ is a given class of functions

• C(r) = polynomials of order r

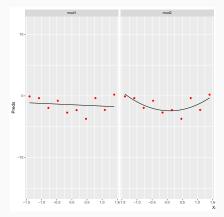
• C(r) = polynomials of order r

• $C(1) = \{f : f(x) = \beta_0 + \beta_1 x\}$



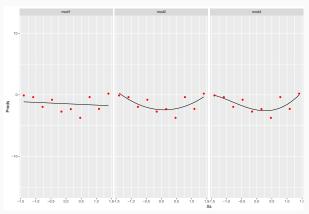
• C(r) = polynomials of order r

• $C(2) = \{f : f(x) = \beta_0 + \beta_1 x + \beta_2 x^2\}$

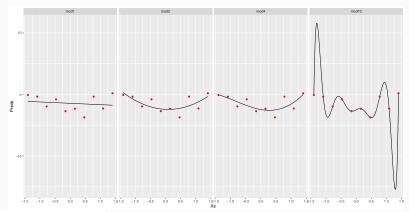


• C(r) = polynomials of order r

• $\mathcal{C}(1) \subset \mathcal{C}(2) \subset \mathcal{C}(4)$

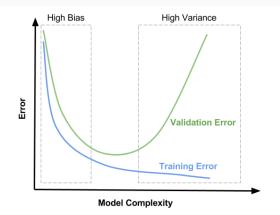


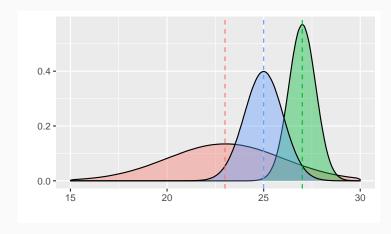
- C(r) = polynomials of order r
- $\mathcal{C}(1) \subset \mathcal{C}(2) \subset \mathcal{C}(4) \subset \mathcal{C}(10)$



Underfitting (bias) / Overfitting (Variance)

- the more complex C, the better the fit of \hat{f} on $\mathcal{T}(n)$
- \Rightarrow the better \hat{f} ?
 - Does $\hat{f}(\mathbf{x})$ really best predict y?





Whole population

High-caloric diet

High-calorie diet + low physical activity + "bad" genes + ...

Summary

- Supervised learning: given $\mathcal{T}(n)$ and a new \mathbf{x}_0 , predict y_0
- **Bias-variance tradeoff**: the model (class *C*) should be complex enough to prevent underfitting, but not too complex to prevent overfitting.
- Optimal choice is data-dependent:
 - in particular, the larger *n*, the more complex the class can be
- Model selection: given $\mathcal{C}(1) \subset \mathcal{C}(2) \subset \ldots \subset \mathcal{C}(K)$, select the best one
 - by
 - fitting $\hat{f}^{(k)}$ (corresponding to model $\mathcal{C}(k)$) on $\mathcal{T}(n)$
 - evaluating each $\hat{f}^{(k)}$ on a validation sample \mathcal{V} , where available
 - by using cross-validation otherwise

Cross-validation

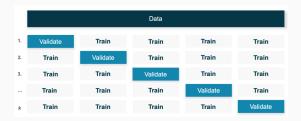
• CV is a way to "emulate" validation samples when no independent validation sample is available

Cross-validation

• CV is a way to "emulate" validation samples when no independent validation sample is available

Cross-validation

• CV is a way to "emulate" validation samples when no independent validation sample is available



Penalized approaches for high-dimensional linear regression models

• Consider $\mathcal{C} = \mathcal{C}^{(lin)}$ with

$$\mathcal{C}^{(lin)} = \{f : f(\mathbf{x}) = f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p = \sum_j \beta_j x_j = \mathbf{x}^T \beta \}$$

• Consider
$$\mathcal{C} = \mathcal{C}^{(lin)}$$
 with

$$\mathcal{C}^{(lin)} = \{ f : f(\mathbf{x}) = f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p = \sum_j \beta_j x_j = \mathbf{x}^T \beta \}$$

• not as restrictive as it looks: e.g., by augmenting the data

$$x_j = z_1 z_3 + z_2^2 + \sin(z_4) \times \exp(z_5)$$

• Consider
$$C = C^{(lin)}$$
 with

$$\mathcal{C}^{(lin)} = \{ f : f(\mathbf{x}) = f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p = \sum_j \beta_j x_j = \mathbf{x}^T \beta \}$$

• Initial objective: Use $\mathcal{T}(n) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ to find \hat{f} by solving

$$\hat{f} = \underset{f \in \mathcal{C}^{(lin)}}{\operatorname{argmin}} \sum_{i} \{y_i - f(\mathbf{x}_i)\}^2$$

• Consider
$$C = C^{(lin)}$$
 with

$$\mathcal{C}^{(lin)} = \{ f : f(\mathbf{x}) = f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p = \sum_j \beta_j x_j = \mathbf{x}^T \beta \}$$

• Initial objective: Use $\mathcal{T}(n) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ to find $\hat{\boldsymbol{\beta}}$ by solving

$$\hat{oldsymbol{eta}} = \operatorname*{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_i (y_i - \mathbf{x}_i^{\mathsf{T}} oldsymbol{eta})^2$$

• Consider
$$C = C^{(lin)}$$
 with

$$\mathcal{C}^{(lin)} = \{ f : f(\mathbf{x}) = f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p = \sum_j \beta_j x_j = \mathbf{x}^T \beta \}$$

• Initial objective: Use $\mathcal{T}(n) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ to find $\hat{\boldsymbol{\beta}}$ by solving

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2}$$
$$\Rightarrow \hat{\boldsymbol{\beta}} = \mathsf{OLS} \text{ estimator}$$

Overfitting in high-dimensional regression models: the curse of dimensionality

 $\mathbb{E}\{[y - \hat{f}(\mathbf{x})]^2\} = \text{Incompressible term} + \text{Bias}(\hat{f}(\mathbf{x}))^2 + \text{Variance}(\hat{f}(\mathbf{x}))$

• variance of OLS estimates : $\sim \min(p/n, 1)$...

• $C^{(lin)}$ might be a too complex when p is large; $n \gg p$

International Agency for Research on Cancer

Complexity of linear regression models

• For any given $\tau \ge 0$

$$\mathcal{C}^{(lin)}(\tau) = \{ f^{(\beta)} : f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p$$

s.t. Pen(β) $\leq \tau \}$

• where $\operatorname{Pen}(eta)$ is a measure of the complexity of $eta \in \mathbb{R}^p$

 Pen(β) = ||β||₀: number of non-zero components of β (~ best subset regression)

• Pen
$$(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$$

• Pen
$$(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_2^2 = \sum_{j=1}^p |\beta_j|^2$$

• etc.

Complexity of linear regression models

• For any given $\tau \ge 0$

$$\mathcal{C}^{(lin)}(\tau) = \{ f^{(\beta)} : f^{(\beta)}(\mathbf{x}) = \beta_1 x_1 + \dots \beta_p x_p$$

s.t. Pen(β) $\leq \tau \}$

• where $\operatorname{Pen}(eta)$ is a measure of the complexity of $eta \in \mathbb{R}^{
ho}$

 Pen(β) = ||β||₀: number of non-zero components of β (~ best subset regression)

• Pen(
$$\beta$$
) = $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$

• Pen
$$(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_2^2 = \sum_{j=1}^p |\beta_j|^2$$

• etc.

• For any given $0 \le \tau_1 \le \ldots \le \tau_R \le \infty$

$$\mathcal{C}^{(\mathit{lin})}(0) \subset \mathcal{C}^{(\mathit{lin})}(au_1) \subset \ldots \subset \mathcal{C}^{(\mathit{lin})}(au_R) \subset \mathcal{C}^{(\mathit{lin})}(\infty) = \mathcal{C}^{(\mathit{lin})}$$

From constrained optimization to penalized optimization

• Given
$$0 \leq \tau_1 \leq \ldots \leq \tau_R \leq \infty$$
;

• for each r, we aim to find

$$\hat{f}^{(r)} = \operatorname*{argmin}_{f \in \mathcal{C}^{(lin)(\tau_r)}} \sum_{i} \{y_i - f(\mathbf{x}_i)\}^2$$

or equivalently,

$$\hat{\boldsymbol{\beta}}^{(r)} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}: \mathrm{Pen}(\boldsymbol{\beta}) \leq \tau_{r}} \sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2}$$

From constrained optimization to penalized optimization

• Given
$$0 \leq \tau_1 \leq \ldots \leq \tau_R \leq \infty$$
;

• for each r, we aim to find

$$\hat{f}^{(r)} = \operatorname*{argmin}_{f \in \mathcal{C}^{(lin)(\tau_r)}} \sum_{i} \{y_i - f(\mathbf{x}_i)\}^2$$

or equivalently,

$$\hat{\boldsymbol{\beta}}^{(r)} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}: \mathrm{Pen}(\boldsymbol{\beta}) \leq \tau_{r}} \sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2}$$

or equivalently,

$$\hat{\boldsymbol{\beta}}^{(r)} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{i} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda_r \mathrm{Pen}(\boldsymbol{\beta}) \right\}$$

for some $\lambda_r = \lambda(\tau_r)$: $\infty \ge \lambda_1 \ge \ldots \ge \lambda_R \ge 0$

Penalized regression models

$$\hat{\boldsymbol{\beta}}^{(r)} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{i} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda_r \mathrm{Pen}(\boldsymbol{\beta}) \right\}$$

Interpretation

- goodness-of-fit (\sim bias)
- complexity of the model (\sim variance)
- selected, e.g., by cross-validation, etc.

Penalized regression models

$$\hat{\boldsymbol{\beta}}^{(r)} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{i} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda_r \mathrm{Pen}(\boldsymbol{\beta}) \right\}$$

- Interpretation
 - goodness-of-fit (\sim bias)
 - complexity of the model (\sim variance)
 - selected, e.g., by cross-validation, etc.
- Special cases
 - Pen(β) = ||β||₀ ∼ BIC: encourages sparsity but computationally impractical.
 - $\operatorname{Pen}(\beta) = \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$: LASSO [Tibshirani, 1996, JRSS-B]: sparsity
 - $\operatorname{Pen}(\beta) = \|\beta\|_2^2 = \sum_{j=1}^p |\beta_j|^2$: RIDGE; no sparsity.

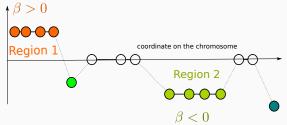
From sparsity to structured sparsity

• Some structure may exist among the predictors

From sparsity to structured sparsity

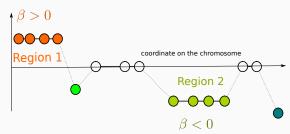
- Some structure may exist among the predictors
- Epigenetic features are naturally ordered
 - Differentially methylated regions (DMRs) in relation to alcohol

intake [Perrier et al., 2019, Clinical Epi.]



From sparsity to structured sparsity

- Some structure may exist among the predictors
- Epigenetic features are naturally ordered
 - Differentially methylated regions (DMRs) in relation to alcohol



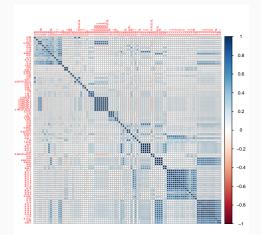
intake [Perrier et al., 2019, Clinical Epi.]

 \Rightarrow The fused lasso: selects regions

$$\operatorname{Pen}(\boldsymbol{\beta}) = \lambda_1 \|\boldsymbol{\beta}\|_1 - \lambda_2 \sum_{j>1} |\beta_j - \beta_{j-1}|$$

 \Rightarrow **possibly** better interpretability, and better accuracy International Agency for Research on Cancer

Another example: untargeted metabolomics



- \Rightarrow Some groups appear:
 - several features from the same metabolite (\sim variants of the same metabolite)
 - several metabolites from the same nutrient, exposure, etc..

Group sparsity

 predefined groups of variables = "Extra"-information to be accounted for; e.g. via the group-lasso penalty: [Yuan and Lin, 2006, JRSS-B]

$$\beta = (\underbrace{\beta_1, \dots, \dots, \dots, \beta_p}_{\beta_1})$$
$$\hat{\beta}(\lambda) \in \operatorname*{argmax}_{\beta \in \mathbb{R}^p} \Big\{ \mathcal{L}(\beta) - \lambda \sum_{g=1}^G \|\beta_g\|_2 \Big\}.$$

- Selection is performed:
 - at the variable level with the Lasso
 - at the group level with the group Lasso

Multi-task learning and subgroup analysis

Multi-task learning / subgroup analysis

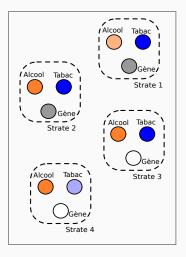
- Subgroup analyses
 - the overall population = K predefined groups (or strata), based on "additional" covariates (e.g., gender, age categories)

- Multi-task learning
 - several "related" outcomes Y_1, \ldots, Y_k (e.g., disease subtypes)

Example 1: Linear regression on stratified data

- Association between y ∈ ℝ and x ∈ ℝ^p on K predefined strata; Z = 1,..., K.
- *k*-th strata, *i* = 1, ..., *n_k*:
 - $y_i^{(k)} = \mathbf{x}_i^{(k)^T} \boldsymbol{\beta}_k^* + \boldsymbol{\xi}_i^{(k)}$
- ⇒ data shared lasso [Ballout et al., 2020, Biostatistics], or generalized fused lasso [V. et al., 2016, Stat. Comp.]

$$\operatorname{Pen}(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_K) = \sum_k \|\boldsymbol{\beta}_k\|_1 + \sum_{k < \ell} \|\boldsymbol{\beta}_k - \boldsymbol{\beta}_\ell\|_1$$



[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$

[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$
 - $Z_i^j = k$: subtype of the case

[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$
 - $Z_i^j = k$: subtype of the case
- The global study: K sub-studies
 - 1. m_1 pairs: Subtype 1 BC Vs Control
 - 2. *m*₂ pairs: Subtype 2 BC Vs Control
 - 3. ...
 - 4. m_K pairs: Subtype K BC Vs Control

[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$
 - $Z_i^j = k$: subtype of the case
- The global study: K sub-studies
 - 1. m_1 pairs: Subtype 1 BC Vs Control $\Rightarrow \beta_1^*$ 2. m_2 pairs: Subtype 2 BC Vs Control 3. ...
 - 4. m_K pairs: Subtype K BC Vs Control

[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$
 - $Z_i^j = k$: subtype of the case
- The global study: K sub-studies
 - 1. m_1 pairs: Subtype 1 BC Vs Control $\Rightarrow \beta_1^*$ 2. m_2 pairs: Subtype 2 BC Vs Control $\Rightarrow \beta_2^*$ 3. ...
 - 4. m_K pairs: Subtype K BC Vs Control

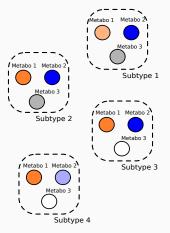
[Ballout et al., 2020, Biostatistics]

•
$$y \in \{0, 1, \dots, K\}$$

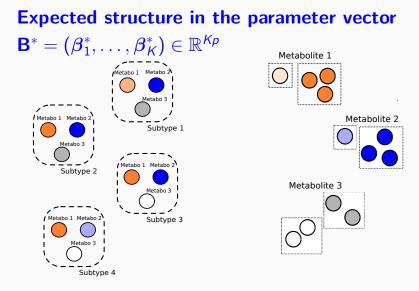
- *y* = 0 : control
- y = k > 0 : case, of subtype k.
- m = n/2 pairs of observations, $(\mathbf{x}_i^j, y_i^j, Z_i^j)_{i=1,...,m}^{j=1,2}$
 - one case, i.e. $Y_i^1 = 1$.
 - one matched control, i.e. $Y_i^2 = 0$
 - $Z_i^j = k$: subtype of the case
- The global study: K sub-studies
 - 1. m_1 pairs: Subtype 1 BC Vs Control $\Rightarrow \beta_1^*$ 2. m_2 pairs: Subtype 2 BC Vs Control $\Rightarrow \beta_2^*$ 3. ...
 - 4. m_K pairs: Subtype K BC Vs Control $\Rightarrow \beta_K^*$

Expected structure in the parameter vector

 $\mathbf{B}^* = (oldsymbol{eta}_1^*, \dots, oldsymbol{eta}_{\mathcal{K}}^*) \in \mathbb{R}^{\mathcal{K}_{\mathcal{P}}}$



Complexity
$$=\sum_k \|oldsymbol{eta}_k^*\|_0 = 10$$



Complexity =
$$\sum_k \| \boldsymbol{\beta}_k^* \|_0 = 10$$

International Agency for Research on Cancer

10 Complexity = 5 **possibly** better interpretability, and better accuracy

Metabolomics and cancer risk (preliminary)

Metabolomics and cancer risk (preliminary)

- Data shared lasso
 - identification of (potential) common patterns
 - identification of (more interpretable) heterogeneities

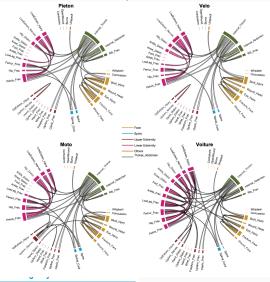
Example 3 : *K* **binary graphical models**

[Ballout and V., 2019, Statist. Med.]

Intern

World Health

Organization

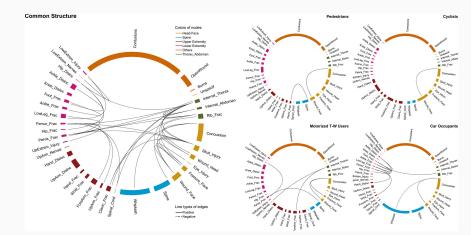


- Association among injuries suffered by victims of road accidents
- groups: \sim road user type

24

Example 3 : *K* **binary graphical models**

[Ballout and V., 2019, Statist. Med.]



Discussion

Discussion

- High-dimension supervised learning is a difficult task
 - unless the true model is not too complex, or can be well approximated by not too complex of a model
 - appropriate methods are applied, and design matrices (predictors) are **"well conditioned"**
 - and/or we have large sample size

Discussion

- High-dimension supervised learning is a difficult task
 - unless the true model is not too complex, or can be well approximated by not too complex of a model
 - appropriate methods are applied, and design matrices (predictors) are "well conditioned"
 - and/or we have large sample size
- A related, and even more complicated task: variable selection (~ etiology)
 - We assumed throughout that $Y = f^*(\mathbf{X}) + \xi$
 - But X_j useful to predict Y
 - \Rightarrow X_j is really associated with Y
 - $\Rightarrow X_j$ is a cause of Y
 - In particular, the "true" (or a better) model might be $Y = g^*(W, \varepsilon)$.
 - W usually differs from X

