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Supervised Learning and overfitting



Overview
• y : outcome of interest

• continuous: biomarker level, survival time, consumption of
electricity, traffic, etc.

• categorical/binary: diseased/“healthy”, “qualifiers” of an
image, spam/regular email, etc.

• What is the best prediction we can make for a new
individual/observation?

• Intuition with a continuous y ; example: biomarker level
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Formalism

• Data
• y : continuous outcome (∼ label)
• x = (x1, . . . , xp): p features (predictors)

• Objective: to find the function f such that
• for “most” (x, y), f (x) best predicts y

• E(x,y){[y − f (x)]2} is minimized.

• Solution: f (x) = f ∗(x) = E(y |x): the regression function
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Towards supervised learning

• But f ∗ unknown

• Solution:
• Use a training sample T (n) = {(x1, y1), . . . , (xn, yn)},
• and the approx. 1

n
∑

i{yi − f (xi)}2 ≈ E(x,y){[y − f (x)]2}

• Supervised Learning

f̂ = argmin
f ∈C

n∑
i=1

where C is a given class of functions
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A first simple example: X = X ∈ R

• C(r) = polynomials of order r
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A first simple example: X = X ∈ R

• C(r) = polynomials of order r

• C(1) = {f : f (x) = β0 + β1x}

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

mod1 mod2 mod4 mod10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−10

0

10

Xs

P
re

ds

6



A first simple example: X = X ∈ R

• C(r) = polynomials of order r

• C(2) = {f : f (x) = β0 + β1x + β2x2}
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A first simple example: X = X ∈ R

• C(r) = polynomials of order r

• C(1) ⊂ C(2) ⊂ C(4)
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A first simple example: X = X ∈ R
• C(r) = polynomials of order r

• C(1) ⊂ C(2) ⊂ C(4) ⊂ C(10)
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Underfitting (bias) / Overfitting (Variance)
• the more complex C, the better the fit of f̂ on T (n)
⇒ the better f̂ ?
• Does f̂ (x) really best predict y?
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Summary

• Supervised learning: given T (n) and a new x0, predict y0

• Bias-variance tradeoff: the model (class C) should be
complex enough to prevent underfitting, but not too complex
to prevent overfitting.

• Optimal choice is data-dependent:
• in particular, the larger n, the more complex the class can be

• Model selection: given C(1) ⊂ C(2) ⊂ . . . ⊂ C(K ), select the
best one

• by
• fitting f̂ (k) (corresponding to model C(k)) on T (n)
• evaluating each f̂ (k) on a validation sample V, where available

• by using cross-validation otherwise
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Cross-validation

• CV is a way to “emulate” validation samples when no
independent validation sample is available
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Penalized approaches for
high-dimensional linear regression
models



Linear regression model
• Consider C = C(lin) with

C(lin) = {f : f (x) = f (β)(x) = β1x1+. . . βpxp =
∑

j
βjxj = xT β}

• not as restrictive as it looks: e.g., by augmenting the data

xj = z1z3 + z2
2 + sin(z4)× exp(z5)

• Initial objective: Use T (n) = {(x1, y1), . . . , (xn, yn)} to find
by solving

⇒ β̂ = OLS estimator
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Overfitting in high-dimensional regression
models: the curse of dimensionality

E{[y − f̂ (x)]2}
= Incompressible term + Bias(f̂ (x))2 + Variance(f̂ (x))

• variance of OLS estimates : ∼ min(p/n, 1) ...

• C(lin) might be a too complex when p is large; n /� p

12



Complexity of linear regression models

• For any given τ ≥ 0

C(lin)(τ) = {f (β) : f (β)(x) = β1x1 + . . . βpxp

s.t. Pen(β) ≤ τ}

• where Pen(β) is a measure of the complexity of β ∈ Rp

• Pen(β) = ‖β‖0: number of non-zero components of β

(∼ best subset regression)
• Pen(β) = ‖β‖1 =

∑p
j=1 |βj |

• Pen(β) = ‖β‖2
2 =

∑p
j=1 |βj |2

• etc.

• For any given 0 ≤ τ1 ≤ . . . ≤ τR ≤ ∞

C(lin)(0) ⊂ C(lin)(τ1) ⊂ . . . ⊂ C(lin)(τR) ⊂ C(lin)(∞) = C(lin)
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From constrained optimization to penalized
optimization

• Given 0 ≤ τ1 ≤ . . . ≤ τR ≤ ∞;
• for each r , we aim to find

f̂ (r) = argmin
f ∈C(lin)(τr )

∑
i
{yi − f (xi)}2

or equivalently,

β̂
(r)

= argmin
β∈Rp :Pen(β)≤τr

∑
i
(yi − xT

i β)2

or equivalently,

β̂
(r)

= argmin
β∈Rp

{∑
i
(yi − xT

i β)2 + λr Pen(β)
}

for some λr = λ(τr ): ∞ ≥ λ1 ≥ . . . ≥ λR ≥ 0
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Penalized regression models

β̂
(r)

= argmin
β∈Rp

{∑
i
(yi − xT

i β)2 + λr Pen(β)
}

• Interpretation
• goodness-of-fit (∼ bias)
• complexity of the model (∼ variance)
• selected, e.g., by cross-validation, etc.

• Special cases
• Pen(β) = ‖β‖0 ∼ BIC: encourages sparsity but

computationally impractical.
• Pen(β) = ‖β‖1 =

∑p
j=1 |βj |: LASSO [Tibshirani, 1996, JRSS-B]:

sparsity
• Pen(β) = ‖β‖2

2 =
∑p

j=1 |βj |2: RIDGE; no sparsity.
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From sparsity to structured sparsity
• Some structure may exist among the predictors

• Epigenetic features are naturally ordered
• Differentially methylated regions (DMRs) in relation to alcohol

intake [Perrier et al., 2019, Clinical Epi.]

coordinate on the chromosomeRegion 1

Region 2

⇒ The fused lasso: selects regions

Pen(β) = λ1‖β‖1 − λ2
∑
j>1
|βj − βj−1|

⇒ possibly better interpretability, and better accuracy
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Another example: untargeted metabolomics
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2.78FCSC.1
2.78FCSC.2
2.78FCSC.3
2.78FCSC.4
2.78FCSC.5

2.78FCFLSCSL
3.21SL

3.22
3.22.1

3.79SL
3.9SL

6.02
6.81
6.86

6.86SL
6.92

6.92FCFL
6.93SL
6.93.1
6.94.1

7.16
7.27SL

8.47
8.47.1
8.47.2
8.47.3

8.48
8.55FCFLSCSL

8.55
8.63

8.64FLSL
8.64SL

8.64
8.65

8.65.1
8.71

8.71.1
8.71.2
8.71.3
8.71.4
8.71.5
8.71.6
8.71.7
8.71.8

8.74
8.74.1
8.74.2
8.74.3

8.74SL
8.95
9.13
9.14

9.14.1
9.14.2
9.14.3
9.14.4
9.14.5
9.14.6

9.15
9.17SL

9.86
9.86.1

⇒ Some groups appear:
• several features

from the same
metabolite (∼
variants of the
same metabolite)

• several metabolites
from the same
nutrient, exposure,
etc..
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Group sparsity

• predefined groups of variables = "Extra"-information to be
accounted for; e.g. via the group-lasso penalty: [Yuan and Lin, 2006,

JRSS-B]

β = (β1, . . .︸ ︷︷ ︸
β1

, . . . , . . . βp︸ ︷︷ ︸
βG

)

β̂(λ) ∈ argmax
β∈Rp

{
L(β)− λ

G∑
g=1
‖βg‖2

}
.

• Selection is performed:
• at the variable level with the Lasso
• at the group level with the group Lasso

18



Multi-task learning and subgroup
analysis



Multi-task learning / subgroup analysis

• Subgroup analyses
• the overall population = K predefined groups (or strata),

based on “additional” covariates (e.g., gender, age categories)

• Multi-task learning
• several "related" outcomes Y1, . . . ,Yk (e.g., disease subtypes)

19



Example 1: Linear regression on stratified data
• Association between y ∈ R
and x ∈ Rp on K predefined
strata; Z = 1, . . . ,K .

• k-th strata, i = 1, . . . , nk :

y (k)
i = x(k)

T

i β∗k + ξ
(k)
i

⇒ data shared lasso [Ballout et al.,

2020, Biostatistics], or generalized
fused lasso [V. et al., 2016, Stat. Comp.]

Pen(β1, . . . ,βK ) =∑
k
‖βk‖1 +

∑
k<`
‖βk − β`‖1

Strate 2

Strate 1

Strate 3

Strate 4

Gène

Alcool

Alcool

Alcool

Alcool Tabac

Tabac

Tabac

Tabac

Gène

Gène

Gène
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Example 2 : matched case-control studies
[Ballout et al., 2020, Biostatistics]

• y ∈ {0, 1, . . . ,K}
• y = 0 : control
• y = k > 0 : case, of subtype k.

• m = n/2 pairs of observations, (xj
i , y

j
i ,Z

j
i )

j=1,2
i=1,...,m

• one case, i.e. Y 1
i = 1.

• one matched control, i.e. Y 2
i = 0

• Z j
i = k: subtype of the case

• The global study: K sub-studies
1. m1 pairs: Subtype 1 BC Vs Control
2. m2 pairs: Subtype 2 BC Vs Control
3. ...
4. mK pairs: Subtype K BC Vs Control
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• one matched control, i.e. Y 2
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• Z j
i = k: subtype of the case

• The global study: K sub-studies
1. m1 pairs: Subtype 1 BC Vs Control ⇒ β∗

1
2. m2 pairs: Subtype 2 BC Vs Control ⇒ β∗

2
3. ...
4. mK pairs: Subtype K BC Vs Control ⇒ β∗

K
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Expected structure in the parameter vector
B∗ = (β∗1, . . . , β∗K ) ∈ RKp

Subtype 2

Subtype 1

Subtype 3

Subtype 4

Metabo 1 Metabo 2

Metabo 3

Metabo 2 Metabo 1

Metabo 3

Metabo 2Metabo 1

Metabo 3

Metabo 1 Metabo 2

Metabo 3

Complexity =
∑

k ‖β∗k‖0 = 10

Metabolite 1

Metabolite 2

Metabolite 3
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Expected structure in the parameter vector
B∗ = (β∗1, . . . , β∗K ) ∈ RKp

Subtype 2

Subtype 1

Subtype 3

Subtype 4

Metabo 1 Metabo 2

Metabo 3

Metabo 2 Metabo 1

Metabo 3

Metabo 2Metabo 1

Metabo 3

Metabo 1 Metabo 2

Metabo 3

Complexity =
∑

k ‖β∗k‖0 = 10

Metabolite 1

Metabolite 2

Metabolite 3

Complexity = 5
possibly better interpretability, and
better accuracy 22



Metabolomics and cancer risk (preliminary)

Independent Lasso
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• Data shared lasso
- identification of (potential) common patterns
- identification of (more interpretable) heterogeneities
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Metabolomics and cancer risk (preliminary)

Independent Lasso

Data Shared Lasso
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• Data shared lasso
- identification of (potential) common patterns
- identification of (more interpretable) heterogeneities
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Example 3 : K binary graphical models
[Ballout and V., 2019, Statist. Med.]

• Association among
injuries suffered by
victims of road
accidents

• groups: ∼ road
user type
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Example 3 : K binary graphical models
[Ballout and V., 2019, Statist. Med.]

24



Discussion



Discussion
• High-dimension supervised learning is a difficult task

• unless the true model is not too complex, or can be well
approximated by not too complex of a model

• appropriate methods are applied, and design matrices
(predictors) are “well conditioned”

• and/or we have large sample size

• A related, and even more complicated task: variable
selection (∼ etiology)

• We assumed throughout that Y = f ∗(X) + ξ

• But Xj useful to predict Y
; Xj is really associated with Y
; Xj is a cause of Y

• In particular, the "true" (or a better) model might be
Y = g∗(W , ε).

• W usually differs from X
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