# The cerebro-spinal fluid as a Biomechanical marker in SCI

#### Laboratory of Applied Biomechanics Aix-Marseille Université - Université Gustave Eiffel Morgane EVIN

8<sup>th</sup> of June, 2023



Spine Biomechanics Canal components characterization Canal components characterization

### Spine Biomechanics



< 口 > < 同

# Context: Biomechanical role of the cerebro-spinal fluid

#### Spinal cord injury (SCI)

250,000 and 500,000 injuries: 10.5

new/100.000 pers/year Kumar et al., 2018

#### Societal issue

Associated cost: 0.1-2.19 million € (UK, Spain) 33 % tetraplegia, paraplegia Pronostic marker, quality of life

#### Decompression surgery

To restore CSF pulsation or SC

decompression

#### Mechanisms associated to SCI



#### Treatements of SCI

Stem cells, Electrostimulation, early mobilisation

SCI fact 2016, World Health Organisation, Witiw et

Fehlings, 2015

# Cerebro spinal fluid (CSF)



#### Cerebro spinal fluid (CSF)

- Newtonian Fluid
- Pulsation indexed on cardiac cycle
- Components of the SC canal

#### Rational for CSF Biomechanical role in SCI

CSF Biomarker - primary or cellular cascades ASIA Score : 89% Prediction in 72h post injury

**Hypothesis:** The CSF has a role in the restoration or alteration of the SCI patients.

**Question:** How to create a CSF biomechanical marker at the patient's bedside?

# Morphology of the subarachnoidal canal

|                                          |                                                                                                                                                                             | ••••                |                   | uui                 | Ca     | IIIai                        |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|---------------------|--------|------------------------------|--|--|--|--|
| 1 Healthy                                | voluntee<br>Elevion                                                                                                                                                         | rs -                | T2                | -Spa                | ace    | 2021                         |  |  |  |  |
| upine anu                                | Пехіон                                                                                                                                                                      | - 30                | ures              | et al.              | , spii | ie, 2021                     |  |  |  |  |
| 01-62<br>01-62<br>01-62                  | Avan CSS CRA along the normalism                                                                                                                                            | Cervical (C1 - C    | 7)- resolval VB F | Cil                 | CI     | GT                           |  |  |  |  |
| 100                                      |                                                                                                                                                                             | 1                   | -                 |                     | LH     |                              |  |  |  |  |
| 4 67 64                                  | 0.3 0.4                                                                                                                                                                     |                     | at nettai         | Morr -              | leion  | Variabral andplate - teached |  |  |  |  |
| Mean O                                   | Barrierd Doubles - maked                                                                                                                                                    |                     |                   |                     |        |                              |  |  |  |  |
| ·* [                                     |                                                                                                                                                                             | -                   |                   |                     |        |                              |  |  |  |  |
| g 0.4                                    |                                                                                                                                                                             | -                   | -                 |                     |        | $\sim$                       |  |  |  |  |
|                                          |                                                                                                                                                                             |                     |                   |                     | ~      |                              |  |  |  |  |
|                                          |                                                                                                                                                                             |                     |                   |                     |        |                              |  |  |  |  |
| 8                                        |                                                                                                                                                                             |                     |                   |                     |        |                              |  |  |  |  |
| 04                                       | 0                                                                                                                                                                           | 54<br>1 64          |                   | 03                  | 08     | 0                            |  |  |  |  |
| 0.1 0.1 0.2                              | 0.3 0.4                                                                                                                                                                     | 0.5                 | 0.6               | 0.7                 | 1.0    | 6.9 1                        |  |  |  |  |
| 14 A A A A A A A A A A A A A A A A A A A | Normalized Balance between the O                                                                                                                                            | toritoid process of | C1 and the inte   | nor enoptime of C i |        |                              |  |  |  |  |
| TABLE 4. Summary Table of                | f the Main Results f                                                                                                                                                        | or Each Ir          | ndex              |                     |        |                              |  |  |  |  |
| Morphological Parameters                 | Main Position-dependent Evolution                                                                                                                                           |                     |                   |                     |        |                              |  |  |  |  |
| CSS CSA                                  | Significant decrease from CI to C3 superior endplate. From C3 to C7, low variation                                                                                          |                     |                   |                     |        |                              |  |  |  |  |
| SC CSA                                   | and oscillating phase around 157 mm <sup>2</sup> in neutral and 162 mm <sup>2</sup> in flexion positions.<br>Significantly lower in flexion than in neutral surine position |                     |                   |                     |        |                              |  |  |  |  |
| OR                                       | After the superior C3 endplate (0.33-neutral; 0.35-flexion), the flexion OR decreases<br>[aster than in neutral position.                                                   |                     |                   |                     |        |                              |  |  |  |  |
| CR                                       | The CR index decreased steadily between C2 dens and to C7 inferior endplate for both<br>posters. The CR for the flexion case is systematically lower.                       |                     |                   |                     |        |                              |  |  |  |  |
| AP eccentricity index                    | Same location for the both postures before C3 vertebra. After C3, in flexion the SC is                                                                                      |                     |                   |                     |        |                              |  |  |  |  |
|                                          | Spinal cord centered (shift of 3% from the center of the canal) in the canal for the both<br>performance.                                                                   |                     |                   |                     |        |                              |  |  |  |  |
| LR eccentricity index                    | Spinal cord centere<br>postures.                                                                                                                                            | d (shift of 33      | autione           |                     |        |                              |  |  |  |  |

#### Findings

- Poisson effect Spinal cord morphology change
- Normal ranges and 3D characterization

#### Next to be published:

- Degenerative Cervical Myelopathy. Frebourg et al., 2021. Sudres et al.
- Traumatic Spinal Cord Injury. Berriot et al., CMBBE. Berriot et al.

### PhD Student P. Sudres, 2021

Collaboration CRMBM, V. Callot.

### Meningeal tissues characterization - Uniaxial

#### Meninges - literature

Uniaxial characterization - Tensile mostly DAC - Dura matter and Archnoïd complex Differences between orientation and species

#### Uniaxial tensile test

Swine model Pre-load 0.5 N and 2 N for the DAC Preconditioning 30 cycles Load 0.2 mm/s

Collaboration, ETS, Y. Petit





#### Results

Differences between spinal locations in DAC not in PM Uncertainty measurements (Monte Carlos) Preservation method: Flash frozen (ok DAC - PM dft).

Sudres, Evin et al., 2021

Morphology of the subarachnoidal canal Canal components characterization Cerebro-Spinal Fluid Numerical simulation

### Meningeal tissues characterization - Biaxial

#### Biaxial Methodology - literature

De Kegel et al., 2017, Shetye et al., 2014.

#### Biaxial tensile test System

Costumed made system

- 4 step motors Zaber and 4 load cells
- HBM/ National Instrument LabView program
- Pre-load 0.01N.
- 0.05 mm/s on 7mm .

Collaboration, CEMEF, Y. Tillier Bi-photon microscopy - Collagen type II Collaboration, INT Constitutive models comparison



#### Quasi-static biaxial tensile test

#### Constitutive model and micro-structure

$$\begin{split} W_{Ani,GOH} &= C_{10}(I_1-3) + C_{20}(I_1-3)^2 \\ &+ \frac{k_1}{2k_2} \left[ e^{k_2 \left\{ k_1(l_1-3) + (l_1-3\kappa_1)(l_4-1) \right\}^2} - 1 \right] \\ &+ \frac{k_3}{2k_4} \left[ e^{k_4 \left\{ k_2(l_1-3) + (l_1-3\kappa_2)(l_4-1) \right\}^2} - 1 \right] \end{split}$$

Image: Image:

Evin et al, 2022, Acta Biomat.

# Constitutive modelling

| Name<br>Ogden                            | Nb<br>of<br>par.<br>2 | Parameters                                                          |                        | Model used for the<br>matrix-based material<br>Wmatrix> number of<br>fibers population<br>isotropic modified | Ref.                                                   | Strain Energy function |                                                                                   |                                                            |                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |  |
|------------------------------------------|-----------------------|---------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reduced GOH                              | 3                     | $C_{it}(MPa) = \underbrace{B}_{i}(MPa) = \underbrace{B}_{i}(\cdot)$ |                        |                                                                                                              |                                                        |                        | Ogden model (n=1)<br>matrix based NH<br>model, and ĸ=1/3<br>(maximum dispersion), | [32]                                                       | $W_{fibres} = \frac{r}{\beta^2} [\lambda_{11}^2 + \lambda_{22}^2 + \lambda_{33}^2 - 3]$ $W_{retener} = C_{rel}(I, -3) + \frac{k_1}{2} [\rho^{k_2(kI_1-1)^2} - 1]$ |                                                                                                                                                                                                                                                                         |  |
| Ani. GOH                                 | 5                     | C <sub>ce</sub> (MPa)                                               | k:(MPa)                | <u>k</u> <sub>2</sub> (-)                                                                                    | <b>≝</b> (-)                                           | B<br>(rad)             |                                                                                   | matrix based NH<br>model, 1 fibers<br>population           | [32]                                                                                                                                                              | $W_{ARI,GOH} = C_{10}(I_1 - 3) + \frac{k_1}{2k_2} [e^{k_2(\kappa I_1 + (1 - 3\kappa)I_4 - 1)^2} - 1 \\ + e^{k_2(\kappa I_1 + (1 - 3\kappa)I_4 - 1)^2} - 1]$                                                                                                             |  |
| Trans. Iso Gasser                        | 6                     | C <sub>in</sub><br>(MPa)                                            | C <sub>ar</sub> (MPa)  | k <sub>i</sub> (MPa)                                                                                         | <u>k</u> ₁(-)                                          | <u>₩</u> (-)           | B<br>(rad)                                                                        | matrix based Yeoh<br>model, 1 fibers<br>population         | [14]                                                                                                                                                              | $ \begin{split} W_{TIG} &= C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 + \\ \sum_{l=4,6}^{l} \frac{k_1}{2k_2} [e^{k_2(k(I_1 - 3) + (I_1 - 3k)(I_l - 1))^2} - 1] \end{split} $                                                                                                   |  |
| Ani. Gasser                              | 10                    | C <sub>ce</sub><br>(MPa)                                            | Coe(MP8)               | k <sub>i</sub> (MP8)<br>k <sub>i</sub> (MP8)                                                                 | <u>k</u> <sub>2</sub> (-)<br><u>k</u> <sub>3</sub> (-) | <u>¥</u> ₁(-)          | (rad)<br>¥<br>(rad)                                                               | matrix based Yeoh<br>model, 2 <u>fibers</u><br>populations | [14]                                                                                                                                                              | $\begin{split} W_{anlocaser} &= C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 \\ &+ \frac{k_1}{2k_1} \left[ e^{k_2 (k_1(I_1 - 3) + (I_1 - 2k_1)(I_1 - 1))^2} - 1 \right] \\ &+ \frac{k_2}{2k_2} \left[ e^{k_1 (k_2 (I_1 - 3) + (I_1 - 2k_2)(I_2 - 1))^2} - 1 \right] \end{split}$ |  |
| Mooney-Rivlin<br>Fibers<br>strengthening | 6                     | C <sub>in</sub> (MPs)                                               | C <sub>ill</sub> (MPs) | k,(MPa)                                                                                                      | <b>k</b> ₂(·)                                          | <u>R</u> (-)           | B<br>(rad)                                                                        |                                                            | [38]                                                                                                                                                              | $\begin{split} & \text{For } \lambda_d \leq 1, W_2 = 0 \\ & \text{For } 1 < \lambda_d \leq \lambda_d^2, W_{21} = k_2 \left( e^{-k_1 (\lambda_d - 1)} - 1 \right) \\ & \text{For } \lambda_d^* < \lambda_d , W_{22} = k_1 \lambda_d + k_2. \end{split}$                  |  |

### Optimization

Matlab function "Isqcurvefit".

Trust region reflective algorithm.

Morphology of the subarachnoidal canal Canal components characterization Cerebro-Spinal Fluid Numerical simulation

# DAC modeling

### Mechanical Strain/stress



- 96.8 to 122.5 MPa vs 44.3 to 58.6 MPa
- Significant differences in thoracic and lombar DAC between orientations
- Transversely isotropic and anisotropic Gasser models (r<sup>2</sup>=0.99 and RMSE:0.4 and 0.3 MPa)

### Microscopy



Morphology of the subarachnoidal canal Canal components characterization Cerebro-Spinal Fluid Numerical simulation

# PM modeling

### Mechanical Strain/stress



- 20.2 to 31.9 MPa vs 6.7 to 15.6 MPa
- Significant differences in cervical and thoracic PM between orientations
- Slightly significant difference between spinal level in circumferential thoracic PM
- Transversely isotropic and anisotropic Gasser models ( $r^2=1$  and RMSE:0.06 and 0.07 MPa) modelling

### Microscopy

- < A



### Meningeal tissues characterization - to be continued

#### Limitations of the previous study

Coefficient identification unicity and initial parameter influence Number of tested conditions

#### Protocol improvement

5 conditions (ratio 1:1, 1:2, 1:4, 2:1, 4:1) Laville [...] Tillier, 2020 MOOPI Roux, Tillier et al. 2021

11 Macaque samples (PM and DAC) 6 conditions: 132 tests

De Kegel et al., 2017, Shetye et al., 2014.



#### Preliminary results



### Nerves roots and ligaments characterization

PhD Student A. Berriot Collaboration ETS, E. Wagnac.



Singh et al, 2006, Tamura et al, 2017

#### Uniaxial characterization

- Mach-1 (Biomomentum, Montréal, Canada)
- 17N load Cell
- Bi-linear piece-wise fitting

#### Particularities

- Cervical spine and nerve types
- Ogden material model (1st to 3rd).

Submitted to JoB and continued (denticulae ligaments)

Morphology of the subarachnoidal canal Canal components characterization Cerebro-Spinal Fluid Numerical simulation

# Cerebro-Spinal Fluid Numerical simulation

#### Master Internship Lugdivine Leblond





#### Simulations

- AcuSolve Altair Suite
- Sensitivity analysis 40y. old male
- Patient-specific morphology 11 patients
- Boundary conditions not MRI based

# Taking into account Fluid-structure interaction

- Explicit vs Implicit solver
- Solver dependency
- Approach dependency

< □ > < 凸

### Of mice and men



Э

イロト イポト イヨト イヨト