# Prédiction du risque de chute via l'estimation des caractéristiques de la marche à l'aide de capteurs embarqués

Naima Al Abiad, Thomas Robert et Valerie Renaudin

Funded by: The Mobility and Digital Transition project







# Contents

- Introduction
- Controlled environment test
- Measurements in Elderly and young
- Machine learning and improved step detection
- Conclusion and Future work



# Introduction



## Falls







#### How to measure?

### **Visual assessments**





## Laboratory assessments









In 2017, **59%** of adults **65–69** years old, **49%** of adults **70–74** years old, and **31%** of adults **75–79** years old are smartphone owners



29071 Málaga, Spain; E-Mails: rluque@uma.es (R.L.); mjmoron@uma.es (M.-J.M.)



#### Why measure gait?

## Gait Variability: Stride time variability

Neuromotor noise is increased, which in its turn results in a greater variability



Manuel Montero-Odasso,<sup>1,2,3</sup> Susan W. Muir,<sup>1</sup> Maggie Hall,<sup>4</sup> Timothy J. Doherty,<sup>2,5</sup> Marita Kloseck,<sup>6</sup> Olivier Beauchet,<sup>7</sup> and Mark Speechley<sup>3</sup> • Non-linear measures: Lyapunov Exponent.

#### Reflects the ability to recover from small perturbation

## Local dynamic stability and variability of gait are associated with fall history in elderly subjects

Marcel J.P. Toebes <sup>a</sup>, Marco J.M. Hoozemans <sup>a</sup>, Regula Furrer <sup>a</sup>, Joost Dekker <sup>b</sup>, Jaap H. van Dieën <sup>a,\*</sup>

<sup>3</sup>MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands
<sup>b</sup> VU University Medical Center, Department of Rehabilitation Medicine, EMGO Institute for Health and Care Research, The Netherlands

#### RESEARCH ARTICLE

#### Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study

Lucia Bizovska  $^{1\circ}*,$  Zdenek Svoboda  $^{1\circ},$  Miroslav Janura  $^{1\circ},$  Maria Cristina Bisi $^{2\ddagger},$  Nicolas Vuillerme  $^{3,4\ddagger}$ 

#### Differentiating fall-prone and healthy adults using local dynamic

stability

#### Thurmon E. Lockhart<sup>\*</sup> and Jian Liu

Locomotion Research Laboratory, Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA



### Smartphone sensor Quality?



Pepa et al. 2017

#### Manor et al. 2018

Stride times derived from the smartphone app and a reference device were highly correlated with an error of around **17ms** 



Sensor Quality is not the issue

Find a method to process the data and be robust aganist real life activities



#### What is real life?

Holding your smartphone the way you like to hold it, doing whatever you like, wherever you like.

It is complex!





Different walking environments



Different activities



# **Controlled environment test**





**Objective** 

Find a robust way to process the **smartphone Accelerometer and Gyroscope signal** for frequent phone positions to detect steps and calculate stride time variability



10 participants average Age~28 years

## **Preliminary Findings**











Hand is a more complex: **Motion mode** of the hand affects the signal Strength of swing affects the signal

To treat mis-detected steps we apply statistical filtering

Remove abnormal strides more than 1,5sec and less than 0,8sec Remove strides more than 3 SD away from the mean



## **Findings**



|           |           | Treadmill operational mode |           |              |  |  |  |
|-----------|-----------|----------------------------|-----------|--------------|--|--|--|
| %filtered | Low       | Comfortable                | High      | Asymmetrical |  |  |  |
| Waist     | $1\pm 1$  | $2\pm4$                    | $1\pm1$   | $1\pm 0.$    |  |  |  |
| Pocket    | $1\pm0.$  | $2\pm 2$                   | $1\pm 2$  | $0.\pm0.$    |  |  |  |
| Hand      | $25\pm14$ | $14\pm8$                   | $10\pm 6$ | $31\pm16$    |  |  |  |

Detection of steps is really important: Must improve

|                                      |            | Treadmill operational mode |             |      |     |              |  |
|--------------------------------------|------------|----------------------------|-------------|------|-----|--------------|--|
|                                      | Placements | slow                       | comfortable | high |     | Asymmetrical |  |
| Mean $\sigma_t$ [ms]                 | waist      | 31                         | 21          | 16   | + * | 30           |  |
|                                      | pocket     | 29                         | 18          | 15   | + * | 31           |  |
|                                      | hand       | 30                         | 19          | 15   | + * | 30           |  |
| Mean $\sigma_{\rm s}^{\rm adj}$ [ms] | waist      | 31                         | 22          | 15   | +*‡ | 35           |  |
|                                      | pocket     | 31                         | 17          | 15   | +*  | 33           |  |
|                                      | hand       | 28                         | 21          | 14   | +   | 30           |  |
| RMSE $\sigma_{\rm s}^{\rm adj}$ [ms] | waist      | 6                          | 3           | 2    |     | 4            |  |
|                                      | pocket     | 2                          | 3           | 5    |     | 4            |  |
|                                      | hand       | 5                          | 9           | 10   |     | 7            |  |

\* Significance between low and comfortable speed; <sup>‡</sup> Significance between comfortable and high speed;
 <sup>†</sup> Significance between low and high speed; No statistical test was done on asymmetrical gait because of the low number of participants.





# Measurements in Elderly and Young



**Objective** 

# Calculate **gait variability** and **nonlinear measure**: Lyapunov exponent on elderly and young adults



We developed an android app for hospital physiotherapist to measure phone IMU signals

#### **Enguerren Houdry**





## Findings: Gait variability



Average: 34  $\pm$  13 ms



(Hausdorff et al., 1997)



## Findings: Lyapunov

3

2.5

2

1.5

1

0.5

0

#### What is the Lyapunov exponent?

- Estimates a system's local dynamic stability. •
- Reflects the ability to recover from small perturbation ٠
- The higher it is, the worse the system's resistance to local perturbations •



1.26

Young

1.24





# Machine learning and improved hand step detection



8 subjects walking on treadmill 3 different speeds for 210 secs and recording 360 steps per speed per subject.

Total number of steps in database: 3\*360\*8= 8640 examples





X=Features Y= 0 if no-step 1 if step occurred

#### **Histogram based Gradient boosting**



Sensitivity: 98% Specificity: 96%





- Only treadmill walking
- No irregular activities
- Sensor placed in hand (wrist placement can be different)
- Only on young adults





# **Conclusions and Future work**



# Conclusions



We were able to measure stride time variability with a good precision for different phone handling positions



Created a phone IMU recording app and were able to record 6MWT at Hospital and extract data



Promissing results from machine learning for step detection



## Future work

Enlarge dataset to include many cases for machine learning model





Use online databases Medipole experiment data



# Future work

Include more elderly population and follow up phases.



#### We want to get to ambulatory assessments



# Thank you for listening



## Laboratoire de Biomécanique et Mécanique des Chocs (LBMC UMR\_T 9406, UCBL-Univ Eiffel), Lyon

ou pour la version anglaise

Biomechanics and Impact Mechanics Laboratory Univ Lyon – Univ Eiffel, France

